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On the Hilbert-space approach to classical time delay 

D BollCt and J D’Hondt 
Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

Received 19 November 1980, in final form 21 January 1981 

Abstract. Within the context of the Hilbert-space approach to classical mechanics, a 
definition of time delay for classical scattering systems is given. Its relation with the 
S-matrix is discussed by close analogy with the quantum case. 

1. Introduction 

Time delay has been discussed quite extensively in quantum mechanics for two- and 
N-particle scattering via short-range interactions (Bolle and Osborn 1979 and 
references cited therein). From these studies it is clear that this concept of time delay is 
of general importance. First of all, from the point of view of general scattering theory, 
this time-delay approach provides us with a method of extending the concept of the 
phase shift. Secondly, it plays a practical role in the study of the collision process in 
statistical mechanics (Boll6 1979a, b, Osborn 1977 and references cited therein). 

For these reasons, an intriguing question is whether a similar set of results would be 
valid in classical N-particle scattering. Furthermore, we know that the long-range 
effects of Coulomb-type interactions which up to now have not been included in the 
quantum discussions are mostly classical in nature. Therefore, a classical time-delay 
picture may provide us with some useful ideas on how to include these long-range 
interactions in the quantum treatment. 

A study of classical time delay can be carried out directly in phase space or by taking 
L2 of phase space and using the Hilbert-space techniques developed for quantum 
scattering. This work reports a first set of results in the Hilbert-space approach, namely 
the definition of time delay and its connection with the S-matrix for classical two- 
particle scattering via short-range interactions. In close analogy with the corresponding 
quantum result, we find that the classical reduced time-delay operator is equal to the 
logarithmic derivative of the classical reduced S-operator. The methods we use to 
obtain this result can be extended to more complicated scattering systems. So, one can 
argue that for classical scattering also, time delay can be considered as a phase-shift-like 
function that is a characteristic of the scattering process. 

This paper is organised into five sections. In § 2 we present the elements of classical 
Hilbert-space scattering (Hunziker 1968a, 1974) needed in our analysis. Section 3 
defines classical time delay in this approach and writes it in a form in which the exact 
states of the interacting system are replaced by their asymptotic forms. Section 4 
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studies the connection of this form with the classical S-matrix. In § 5 we briefly discuss 
our results, Finally, the Appendix includes the Fourier transform properties of the 
projection operator required by our derivation. 

2. The Hilbert-space approach to classical scattering 

In this section, we present the known features of classical Hilbert-space scattering 
(Hunziker 1968a, 1974) which we employ in this analysis. 

We consider a classical two-particle system characterised by the Hamiltonian 

H(r ,  P) = p 2 / &  + V ( r ) ,  (2.1) 

where r is the interparticle separation in the centre-of-mass system, p the relative 
momentum, V ( r )  the potential and E.C the reduced mass. The set r =  
{z  = ( r ,  p ) :  H ( z )  <CO} is the phase space of the system. 

In the following we assume that the potential satisfies 
(a) V ( r )  is bounded from below by V -  > -CO. For any M < CO, V ( r )  is continuous 

with bounded derivatives up to order two on { r :  V ( r )  < M )  
(b) IV,V(r)j <const. rF2-', 
In this case, Newton's equation of motion 

6 >.O. 

= ( f ,  E i )  = (P/E.C., - V,V(r ) )  (2.2) 

has unique solutions for any initial value z o  E T' and the maps 

s, :zo+z,, -CO<t<+oO (2.3) 

form a one-parameter group of canonical transformations of 1- onto I?. 
In the Hilbert-space approach, the states Y of the scattering system are taken to be 

elements of the Hilbert space L2(r) .  The dynamics is described by a strongly continu- 
ous unitary one-parameter group on L2(r)  induced by the map S, defined in equation 
(2 .3) ,  namely 

U, = e-Lt : Y(z )  + v ( s ~ ) .  
Here, L is the Liouville operator. Explicitly we have 

L=L,+L, 

Lo = - I p / p )  e Vr, Lv = V,V(r)  * V,. 
L then satisfies the equation of motion 

dV/dt = {H, Y} = -LW, 

where { , } is the Poisson bracket. 
One can now describe bound states which must be lin..ed to the boundedness of 

orbits in configuration space. One can also show the existence of scattering states and 
thus the existence of classical Moller operators under the conditions (a) and (b) on the 
potential. By close analogy with quantum mechanical scattering, these Moller opera- 
tors 
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satisfy the following basic properties 

n**a* = I  

R*n"*+B = I  
erLa* =-_ a* e'L" 

3 

where RA* is the adjoint of R*, I is the identity onL2(r),  andB the projection operator 
onto the subspace of bound states. The first property expresses the fact that the R* are 
partial isometries. The second property means that R+ and R- form a complete set of 
scattering states. The third property is called intertwining. 

Finally, one can define the classical scattering operator S as 

s = fl-*a+* (2.9) 
This operator is unitary, namely 

S S * = S * S = I ,  

and satisfies the intertwining relation 

SLO =Los. 

(2.10) 

(2.11) 

The last property will play an important role in our further analysis. 

1974). 
For more details about this approach we refer to the literature (Hunziker 1968a, 

3. Definition of classical two-particle time delay 

In this section we first give a definition of classical two-particle time delay. We then 
write it in a form that contains only asymptotic states of the system. We will use 
arguments similar to the ones we employed in the corresponding quantum mechanical 
problem (Boll6 and Osborn 1979). 

Let fln(z) EL2(r) be a function specifying the incoming state of the system at t = 0. 
Then there exists a state 4 = Rt fin such that the exact interacting state 'I' of the system 
satisfies 

q ( t )  = e-Lr+ + e-Lotfin = 'I",&) for t + -CO, (3.1) 

in the sense of the norm in L2(r) .  There also exists a functionfout(z) EL2(r) specifying 
the outgoing state of the system such that 4 = R-fou, and 

' I ' ( t )  += e-Lotfout =qOUt(t)  fort += +CO. (3.2) 

fout = S f i n .  (3.3) 

Furthermore, 

We now define time delay in terms of the exact state T(t) and the asymptotic states 
q,,(t) and Vout(t). We first look at a finite region I: around the scattering centre in 
configuration space and define the following projection operator P(I:) in L2(r)  

(3.4) 
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Time delay for the region C is then defined as the time the interacting system, described 
by W, is spending in the region C minus the time the asymptotic system, described by Wln 
or WO,,, is spending in that region. This can be expressed in the following formula 

+a3 

Tlnvin, = [ dt[(v(t), P ( x w ( ~ ) )  - (Win(t), ~ ( C W ~ ( ~ ) I I  

The time delay we shall consider in detail is one that is fully symmetric with respect to 
the asymptotic states, namely 

(3.6) 

Of course, we are interested in a quantity that is independent of the region 2. 
Therefore, we will study the limit C + R3 of these different time-delay forms. We will 
see that all these definitions (3.5)-(3.6) have limits and are equivalent. But, by analogy 
with the quantum case, we expect that this is no longer true in the many-particle 
classical time-delay problem. 

In order to consider this limit, we first want to obtain an equivalent form for T(fln, C) 
in which the exact state W ( t )  is replaced by the asymptotic states Tln(t) and Wout(t). The 
following result allows this simplification: 

T(f,,, X) =Wyf1,, C)+~T""'( f , , ,  C). 

Let f in ,  W ( t ) ,  Vln(t) and WO,&) be defined as above. Set 
03 

A+(fi", 9 = j dt [ (W),  P ( W ( t ) )  - ( ~ O d l ) ,  ~ ( V P O " & ) ) l  
0 
0 (3.7) 

A-vin, E) = J-, d t [ ( ~ ( t ) ,  p ( ~ ) ~ ( f ) )  -(*in(l)> p ( ~ ) q i n ( t ) ) ~ ;  

then we have that 

lim A*(fjn, E) = 0. (3.8) Z+R" 

The proof of equation (3.8) rests on the fact that the t-integrands in equations (3.7) can 
be shown to have a E-independent absolutely integrable bound. Then the Lebesgue 
dominated convergence theorem allows one to interchange the C-limit and the t- 
integration. In that limit C+R3, the integrand can be shown to be zero. Since the 
explicit details of this proof are completely analogous to the corresponding quantum 
mechanical result (Bolle and Bsborn 1979) we don't repeat them here. 

Using this result (3.8),  the symmetric definition of time delay (3.6) can be written as 

T(fin, E )  = g+(fin, E) + T-(fin, 2)  +A+(fin, 2)  +A-(fin, Cl, (3.9) 
where 

T*(fin, 2)  = 5 dt[(Wout(l), p(C)Wout(t))  - (Y/.in(e>, p ( ~ ) ~ i n ( t ) ) ~ .  (3.10) 

In the form (3.9) the exact states of the system only appear in the A* and these terms 
vanish in the limit C +. R3. 
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Finally, we can easily introduce the S-matrix in equation (3.10) by employing the 
relations (3.1)-(3.3) and the intertwining property (2.11). We obtain 

&m 

T*;(fin, C) = lo dt(e-l0rfin, K ( C )  e-Loffin), (3.11) 

where 

K ( C )  = S*P(C)S -P(C).  (3.12) 

From now on we omit the subscript 'in'. 
In the next section, we will work out explicit values for these integrals (3.11). 

4. Relation between time delay and the scattering operator 

This section completes the study of the connection between classical time delay and the 
classical S-operator by calculating the limit C --f R3 of T ( f ,  2).  Although the method we 
use resembles the one employed in the quantum mechanical case (Boll6 and Osborn 
1979), we will see that the details are very different. 

Writing out the scalar product in equation (3.1 1) or (3.10) we get e.g. for the second 
term 

*oo 

= -410  d t l  dr  d p f * ( r + P t , p ) X n ( r ) f ( r + ~ t , p )  P 

(4.1) 

withXz(r) the characteristic function for the region C. The difficulty here is that the time 
dependence is implicit and not a multiplying phase factor like in quantum mechanics. 
To solve this difficulty we will consider a Fourier transformation with respect to the 
coordinate space part of phase space. 

We assume that f ( r ,p )  belongs to the Schwarz functions with compact support 
Y(r)  c L2(r). We then define 

So we have that 

Fron now on we drop the- since the rest of our analysis takes place entirely in this partly 
Fourier transformed phase space indicated by (a, p ) .  Because this Fourier transform 
leaves the scalar product in equation (3.11) invariant, we can write out the RHS of this 
equation as 

r c 

3 J dt d a '  dp'exp[i(cy' .p ' ) t /p]f*(cy ' ,  p ' )  d a  dpK(C; cy', p ' ;  a, p )  
0 J 

(4.4) 

(4.5) 
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with P(X, a’-&) the Fourier transform of ,yz(r). These are the forms we are going to 
work with. 

First, we want to make the following important observation. Property (2.11) states 
that the S-operator intertwines wi th lo .  If we write out the explicit form of this property 
i n t h e a , p  variableswefindthat thekernelof S , S ( c u ’ , p ’ ; a , p ) - 6 ( a ’  e p ‘ - a  ‘ p ) .  We 
explicitly want to take out that 8-function by defining a classically reduced sR matrix by 
the kernel relation 

(ff 3’ SR...r.(ff‘,p‘; CY,+). CY’ ‘ p ’  
S ( a ’ , p ’ ;  a , p )  =8(ff’ -p‘-eu ‘ p )  

(ff’ cy .r; (4.6) 

The sR kernel on the RHS of equation (4.6) represents an operator that is the classical 
equivalent of the quantum mechanical reduced on-energy-shell s operator. The factors 
in front of it are chosen such that the operator relations which S obeys are also valid for 
sR in exactly the same form. An example of such a relation that we need further on is 
the unitarity of S (equation (2.10)) that can be written as 

(S*Sf) ( (Y .  p )  =f(ff, PI. (4.7) 

Introducing the reduced sR kernels in equation (4.79, the statement of unitarity 
becomes 

(4.8) 

where we have omitted the subscript a‘ - p ’ for convenience. 
With this information we continue our derivation of the time-delay relation. We 

first introduce the Abel limit in equation (4.4) in order to carry out the t-integration. 
Starting from equation (4.4) or equivalently equation (3.11) and using the fact that 

U, = eLf is a unitary group and the Moller operators SZ’ are isometric, it is straightfor- 
ward to show that the t-integrand is bounded by 2llflI2 for all t. Furthermore, we can 
estimate the rate of convergence in t of that t-integrand by deriving an asymptotic 
expansion for 

g o )  = j dp exp[-i(a *p)t/CLF(P) 

in inverse powers of t by doing successive partial integrations (Hunziker 1968b, p12). 
We then find that the first term of this expansion goes like t-2. So, we can conclude that 
the time integrand of equation (4.4) isL’(t). The dominated convergence theorem then 
allows us to introduce the Abel limit, namely 

Using equation (4.5) we immediately see that the a, p integrals exist absolutely so that 
we can change the order of integration by Fubini’s theorem and do the t-integral first. 
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The result is 

Taking the symmetric combination of 7’’ and T -  gives us, according to equation (3.9), 
the following expression for time delay 

+ A’(f, I:> + A-(f, I:), (4.11) 

where the integral is defined as a principal-value integral. 

start by writing out the kernel I% using equation (4.5) 
We next have to calculate this principal-value integral (4.1 1) in the limit C -+ Iw“. We 

r 1 

T ( f ,  R3) = lim iF d a ’  dp‘ d a  dp ,-+- f *(a’, p ’ )  
X+R3 J ff ‘p -ff  ‘ p  

(4.12) 

We now take the region I: to be a sphere of radiusR. We then use the Fourier transform 
properties of this sphere, outlined in the Appendix. Especially, the first property (A4) 
can immediately be employed to calculate the second term of equation (4.12) in the 
limit C + R3, i.e. R -+ oci. We obtain 

(4.13) 

In the first term of equation (4.12) we introduce the reduced sR matrices defined by 
equation (4.6). We then remove the &functions by integration and finally apply 
property (A4). The result is 

(4.14) 

where we have assumed that the derivative with respect to a1 -pl  exists. We split up 
this result into two parts. The first part contains the derivative of the function f and can 
be written, using the transformation p1 = (a’ -@‘/a1 -Ol)p’, 

(4.15) 
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Applying unitarity of the sR matrices given by equation (4.8) we see that this contribu- 
tion (4.15) cancels expression (4.13). This is what we expect physically, since otherwise 
our time delay expression would depend on the shape of the function f specifying the 
incoming state. 

The second part of expression (4.14) becomes, after puttingpl = (a’ .B‘/a1 .Bl)p‘, 

(4.16) 

Combining the results (4.12)-(4.16) we have shown that time delay is given by 

(4.17) 

From this result, we see that T ( f ,  R’) contains the same &function as the S-matrix 
(compare equation (4.6)). In fact, if we look back at the definition of T ( f ,  C) for finite C, 
given by equations (3.5) and (3 .6) ,  and write out the time-integrand of these equations 
explicitly, it is clear that the factor exp[(i/p)(a’ *p‘ -a  -p) t ]  also leads to this S- 
function. Therefore we are justified in defining a reduced time delay operator qR by 

(4.18) 

Comparing this equation with equation (4.17) we see that the connection between time 
delay and the S-operator can be expressed in terms of the kernels q R  and sR as follows 

(4.19) 

where we have written again the a * p subscript on the s R-matrices. On the basis of this 
kernel relation (4.19), we can also state that the following operator relation is valid 

(4.20) - R  q, . p  = S ~ ~ p  d/d[i(a - p ) / p ]  S,“ . p  

where we have introduced again the -. 
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Doing an inverse Fourier transformation with respect to a (recall equations 
(4.2)-(4.3)), the results (4.17)-(4.20) can finally be written in the form 

The final result (4.21) expressing classical time delay in terms of the classical S-operator 
is the analogue of the corresponding quantum relation (Amrein et a1 1977, Bolle and 
Osborn 1979, Martin 1976) 

lim T(f, C) = (f, S*(dS/diHo)f). 
.%R3 

(4.22) 

5. Discussion 

In the foregoing sections we have derived the relation between classical time delay and 
the classical S-operator in a two-particle system with short-range interactions, within 
the context of the Hilbert-space approach to classical mechanics. The method we have 
used is based upon the explicit properties of the projection operator P ( C )  onto a finite 
region C, taken to be a sphere of radius R. It would certainly be possible to establish the 
final result (4.21) on the basis of methods analogous to other rigorous quantum 
mechanical treatments like e.g. the work of Martin (Amrein et a1 1977, Martin 1976). 
However, the big advantage of the method we have used here is that its quantum 
mechanical analogue is the only one up to now that has been shown to work in the 
quantum mechanical many-particle scattering problem (Bolle and Osborn 1979). So 
we are confident that with this method the same type of results can be obtained for 
classical many-particle systems. 

In the two-particle problem we have discussed here, all three definitions of time 
delay (recall equations (3.5) and (3.6)) have limits when C+R3 and are equivalent. 
Indeed, result (A21) of the Appendix tells us that the free reference time is independent 
of the choice of incoming or outgoing asymptotic state. But by analogy with the 
quantum case, we expect that this is no longer the case in the many-particle problem. 

The results we have derived here can of course be transcribed into the language of 
phase space. In connection with such a phase-space approach to time delay, some 
recent results have appeared. Narnhofer (1980) has discussed a definition of time delay 
based on geometrical considerations which work in classical as well as in quantum 
mechanics. Boll6 and Osborn (1980, see also Osborn et a1 1980) have derived 
Levinson-type theorems for classical two-particle scattering in any dimension in terms 
of time delay and have used these theorems to discuss the high-temperature expansion 
for the classical second virial coefficient. After the present work was finished we 
received a paper (Narnhofer and Thirring 1980) in which the quasiclassical phase shift is 
identified as the generator of the classical canonical S-transformation, illuminating the 
connection between resonances of that phase shift and trajectories with large time 
delays or loopings. 

Finally, comparing equations (4.21) and (4.22), we see that the time delay relation is 
valid for any (scattering) system irrespective of the fact that the underlying dynamics is 
classical or quantum mechanical. For a two-body quantum problem considered in a 
specific partial wave, the time delay is proportional to the energy derivative of the phase 
shift. Thus we can then state that time-delay theory provides a method of defining a 
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universal phase-shift-like functional that is a characteristic of the (classical or quantum 
mechanical) scattering system. It would of course be interesting to study the further 
properties of this classical ‘phase shift’. 

Appendix 1. 

This Appendix studies some properties of the projection operator P(C) in the limit 
when C + R3. 

We assume that the operators act on the set of functions f(a, p )  E Y(a, p ) .  The 
kernel P(C;  a’ -a )  is defined as the Fourier transform of the characteristic function of 
the region C, xx(r), namely 

P ( C ;  a ’ -a )  =- I I dr exp[i(a’-a) * r h x ( r ) .  
( 2 d 3  

Taking C to be a sphere of radius R, a straightforward calculation of the integral gives 

PR ((Y’--(Y) = (R/2rrIcu’-al)3’2J3/2((~’-alR), !A2) 
where J3/2 is a Bessel function of the first kind. Of course, we know that 

The first property we want to prove is then 

PR(a’-a)  
R +a3 (a‘-a) ‘ p  
lim I d a ’  dg’ daf*(a’ ,  p ’ )  ,f(ff,p’) 

d 
d a ‘  * p  

d a ’  dp’f*(a’, p ’ )  - , f ( a I ,  p ’ ) ,  

where this integral has a well-defined meaning as a principal value integral. 
Introducing the variable z = R (a -a‘) we can write 

(a -a’) . p ’ = p ’ ( ~ / ~ )  COS e, (AS) 

where 6 is the angle between (a -a’) andp’. Using equation (A2) the integral on the 
LEIS of equation (A4) becomes 

To evaluate the z integral, we introduce a spherical coordinate system ( z /R ,  8,4) and 
write expression (A6) as 

where 

2n 

(a’, cos 8, p ’ )  = I d+f(a’+z/R, p ’ ) .  
277 0 
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Examination of these formulae indicates that Fz/R is the average value of the function 
(P’(z/R) cos f 3 - I  f(a’+ z/R, p’) summed over the surface of a sphere centred at a’with 
radius z/R. The function fZIR is the non-singular part of the average and the integral 
(A8) is the singular part. 

It is clear that in domains excluding z =0, Fz/R(af ,p‘ )  is integrable over dr .  
Furthermore we will show that FZlR (a’, p ’ )  is continuous in z / R  in the neighbourhood 
of 0, so that we can use the weak convergence of PR (equation (A3)) to conclude that 
expression (A7) can be written in the limit R + 00 as 

-I d a f  dp’f*(a’, p’ )Fo(a ’ ,  p’). (A101 

Let us examine then the behaviour of Fz,R (a‘, p ’ ) .  Defining 

x =p’(z/R) cos 0 (A1 1) 

we get for equation (A8) 

This principal value integral can be written as 

where we have used the mean value theorem and where g is a differentiable function. 
As a 3 0 ,  we simply get that (A13) is equal to the derivative of g at x = 0. Recalling 
equation (A5) we obtain then for (A12) in the limit R + 00 

d 
d a ’  * p  

FO(a’, p’) =- I f (a ’ 9  P ’I. 

Substituting this result in equation (A10) proves our first property (A4). 
The second property we want to show is 

Writing out the LHS of expression (A15) by using equations (3.1)7 (4.2) and (4.3) gives us 

27rp I d a  ’ dp ’ d a  !*(a ’, p ’)a ((a’ - a) - p ’jPR (a ‘ - a)f(a, p ’>. (A16) 

Introducing q = a -a’ and choosing a coordinate system for q whose z-axis lb’, the 
&function in expression (A16) tells us that q is a vector lying in the x-y plane. Therefore 
we get, introducing the explicit expression for PR (equation (A2)), 
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Finally taking qR = z and doing a partial integration in z, we obtain for expression 
(A171 

In the limit R + 00, it is easy to check that the first term of (A18) leads to a contribution 

p ’ ) f ( a ’ ,  p ’ ) .  

The second term of (A18) gives zero in that limit because of the Riemann-Lebesgue 
lemma. Finally, taking the inverse Fourier transform with respect to (Y of the functionsf 
in (A19) verifies our property (A15). Remark that this property just tells us that the 
free transit time through the sphere R is given by 2R divided by the radial velocity. 

In the same way we can show that 

Introducing equations (3.3) and (2.4) in this relation (A20), and applying conservation 
of energy, we easily see that the RHS of equations (A15) and (A20) are equal so that we 
finally obtain 

+cc 

dt(*in(t), PRqin(t>) dt(qout(t), PRqout(t)) = O(R-’). (A211 
-m 
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